**Innovation for Our Energy Future** 

#### **Solar Radiation Measurements:**

**A Workshop For** 

The National Association of State Universities and Land Grant Colleges

By

Tom Stoffel & Steve Wilcox

Hydrogen & Electric Technologies & Systems Center August 4, 2004



#### **Outline**

- Introductions
- Shining On, A Primer on Solar Radiation Data
  - What are solar radiation measurements?
  - Why do we need solar radiation data?
  - What influences the amount of solar radiation?
  - How do we use solar radiation data?
  - How accurate do the data need to be?
- How are we meeting our solar radiation data needs?
- Where can you obtain solar radiation data?
- Pop Quiz
  - No acronyms!



#### **Introductions**

#### Tom Stoffel & Steve Wilcox

Resource Integration Group

Measurement & Instrumentation Team

Geographic Information System Team

#### 40<sup>+</sup> years experience:

- Solar measurement station/network design
  - SRRL, HBCU, Saudi, DOE/ARM, NOAA, WMO/BSRN, GAW
- Radiometer calibration and characterization
  - BORCAL/RCC
  - IPCs, NPCs
- Solar data quality assessment
  - SERI-QC
  - DQMS



# What are Solar Radiation Measurements?

Energy from the Sun at the Earth's Surface

- Different parts of the sky
- Change with time (minutes, hours)
- Change with time (seasons, years, decades)
- Change with location



# What are Solar Radiation Measurements?

#### Light from the sky dome

- Direct from the sun
- Everywhere but the sun
- Entire sky

#### We call it

- Direct (beam)
- Diffuse (sky)
- Global (total)



Global is the sum of direct and diffuse



# What are Solar Radiation Measurements?

#### **Direct Normal**

Measured by a

Pyrheliometer on a

sun-following

tracker

#### **Global Horizontal**

Measured by a Pyranometer with a horizontal sensor

#### **Diffuse**

Measured by a shaded *Pyranometer* under a tracking ball







### **Solar Irradiance Components**

Global = Direct Normal \* Cos(Z) + Diffuse





Cos(Z) = 8/18

 $Z = Cos^{-1}(0.4444)$ 

 $Z = 63.6^{\circ}$ 

18 dots

8 dots

### **Clear Sky**





http://www.nrel.gov/srrl

### **Thermopile Detectors**

How do the radiometers work? Thermo-electric detectors:

**Two metals + Heat = Electrical Current** 

Copper-Constantan wire wound *Thermopiles* 



# **Thermopile Detectors**

#### **Pyrheliometer**

1st Class \$, Flat Spectral Response, "Slow"

**Pyranometer** 



The Eppley Laboratory, Inc.

#### **Photoelectric Detectors**



www.kippzonen.com



www.licor.com

Fast, Low-Cost, with Reduced Spectral Response:



Figure 4. The LI-200SA Pyranometer spectral response is illustrated along with the energy distribution in the solar spectrum (8).

# **Partly Cloudy Sky**



http://www.nrel.gov/srrl

# Changes with Time & Location: Annual Cycle



# **Changes with Time: Inter-annual**



### **Changes with Time: Inter-annual**



# Spectral Distribution of Solar Radiation

**Broadband Solar Radiation:** 

280 nm - 3,000 nm



TIFF (Uncompressed) decompressor are needed to see this picture.

(99% of "shortwave" irradiance at the surface)

# **Spectral Irradiance**

#### **Basic Solar Spectral Regions:**

- Ultraviolet.....200 400 nm
- Visible......400 700 nm
- Infrared......700 3000 nm



#### **Follow the Photons!**



### **Photovoltaic Responses**



# Simple Model for Atmospheric Radiative Transfer of Sunshine SMARTS



### **SMARTS**



Available from NREL: http://rredc.nrel.gov

### Why Do We Need Solar Radiation Data?

Agriculture

Astronomy

Atmospheric Science

Climate Change

Health

Hydrology

Materials

Oceanography

Photobiology

Renewable Energy

**Photosynthesis** 

**Solar Output Variation** 

**Numerical Weather Prediction** 

**Energy Balance** 

UV effects on skin

Evaporation

Degradation

**Energy Balance** 

Light and Life

Sustainability

# Why Do We Need Solar Radiation Data? Renewable Energy

The amount of solar energy reaching the earth's land areas in 1 hour is enough to supply the U.S. energy needs for

1 year (~100 Quads/yr)

- Photovoltaics
- Solar Heat-thermal
- Solar Heat-electric
- Solar Fuel-biomass
- Passive Solar Lighting
- Building HVAC
- Solar Detoxification



# What Influences the Amount of Solar Radiation?

- Solar output
- Earth-Sun distance
- Clouds
- Water vapor
- Air pollution
- Smoke from forest fires
- Volcanic ash
- Location
- Time of day
- Season

11 year solar cycle

3.5% annual variation

**Dominant factor** 

Selective absorber

40% less direct

Natural or man-made

Global effect for years

Solar position

### **Solar "Constant"**



World Radiation Center, Davos, Switzerland http://www.pmodwrc.ch/



# What Influences the Amount of Solar Radiation?



#### Earth's Orbit:

- Earth-Sun distance
- Relative tilt
- Time of day



#### What Influences the Amount of Solar Radiation?



#### **How Do We Use Solar Radiation Data?**

- Technology Selection
- Siting
- System Design
- Performance Monitoring









#### PV Energy kWh/kW-yr

# Effective Load Carrying Capacity





Source: Christy Herig (NREL) and Richard Perez (SUNY/Albany)

- PV can provide peak shaving in many parts of U.S.
- During off-peak periods, PV capacity can be applied to hydrogen generation





# An Integrated Analysis Utilizing GIS can Assist With Energy and Environment Planning Efforts



#### Satellite-Derived Techniques Provide Improved Site-Time Coverage (SUNY/Albany)



GLOBAL IRRADIANCE (average W/sq.m)

DIRECT IRRADIANCE (average W/sq.m)



#### **How Do We Use Solar Radiation Data?**

General Circulation Model Development



DOE/Atmospheric Radiation Measurement (ARM) Program



#### **How Accurate Do the Data Need to Be?**

- What are the risks?
  - Cost/Benefit of Resource Assessment approach
- What is the application?
  - Daylighting & building thermal performance
  - Concentrating Collector Solar Power Plant
  - Cloud forcing analyses for climate change research
- What is the period of interest?
  - Measurement uncertainties decrease with longer averaging intervals (averaging can remove random errors)
  - Recent data more accurate than historical records (technology advancements)



#### **How Accurate Do the Data Need to Be?**

What is possible?

**Measurement Uncertainty Estimates**\*

|                            | Pyrheliometer (Direct Normal) | Pyranometer (Global) |
|----------------------------|-------------------------------|----------------------|
| Calibration                | ±1.6%                         | ±4.2%                |
| Field Data (Best practice) | ~ ±5%                         | ~ ±5%                |

Instantaneous data intervals

# How Will We Meet Our Solar Radiation Data Needs?

#### **Research Activities:**

- Solar Radiation Research Laboratory
  - Metrology
  - Optics
  - Electronics
  - Data Acquisition
- Photovoltaic Program
  - Radiometric Measurements
- Climate Change
  - Broadband Radiometer Mentor
- Collaborations
  - WMO, UNEP, NCAR, NOAA, state & local govt, academia



#### **Solar Radiation Research Lab**



- Baseline Measurements
- Radiometer Calibrations
- Instrument Development
- Station Operator Training



## **Solar Radiation Research Lab**



Baseline Measurements
(98 data elements)
http://www.nrel.gov/midc



**Rotating Shadowband Pyranometer** 

## **Radiometer Calibrations**



World Radiometric Reference



**NREL Transfer Standards** 

NPC At SRRL



### **Radiometer Calibrations**



#### **National Solar Radiation Data Base**



NSRDB Stations (1961-1990)



Solar Measurement Stations (1990 - Present)

# **Automatic Data Quality**



#### Where Can You Obtain solar Radiation Data?

- Renewable Resource Data Center
  - http://rredc.nrel.gov
- Measurement & Instrumentation Data Center
  - http://www.nrel.gov/midc
- NREL Map Server
  - http://www.nrel.gov/maps
- World Radiation Data Center
  - http://wrdc-mgo.nrel.gov
- National Climatic Data Center
  - http://www.ncdc.noaa.gov
- DOE Atmospheric Radiation Measurement Program
  - http://www.arm.gov
- NOAA Climate Monitoring & Diagnostic Laboratory
  - http://www.cmdl.noaa/gov/star
- NOAA Surface Radiation Research Branch
  - http://www.srrb.noaa.gov

# **Key Points**

- Accurate information is important for policy decisions, technology selection, siting, designing, and monitoring the performance of solar energy conversion systems
- Accurate measurements are important for model development
- The work we do to improve solar measurements
  - Calibration
  - Instrument characterization
  - Measurement techniques (operations and maintenance, radiometer selection, installation considerations, etc.)
  - Data Quality Assessment
  - Training
- Data distribution to meet user needs (MIDC, RReDC, NSRDB)

## **Solar Radiation Measurement**

Thank you!

Questions?

Write the relationship between Global, Direct, & Diffuse irradiance.

Global = Direct Normal \* Cos(Z) + Diffuse

Indicate which properties (quick, accurate, or cheap) apply to these pyranometer detector types:

- ✓ Photodiode Fast, Cheap, Spectrally selective
- ✓ Thermopile Accurate, \$\$, Slow

T/F: The Global irradiance can never exceed the solar constant.



The presently accepted value of the Solar Constant:

- a) 1.96 Langleys per minute
- b) 1366 Watts per square meter
- c) 432.7 BTUs per hour-square foot
- d) All of the above

